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Abstract: Statistics on mortality related to each disease are usually 
based on the so-called underlying cause of death, which is selected 
from the diseases declared on the standardized death certificate 
using international rules. However, the assumption that each death 
is caused by exactly one disease is debatable, particularly with an 
aging population in an era where infectious diseases are replaced 
by chronic and degenerative diseases. The need to consider multiple 
causes of death has been acknowledged in epidemiologic research, 
with a growing body of literature producing statistics based on any 
mention of a disease on the death certificate. Yet there has not been 
a formal framework proposed for the statistical modeling of death  
arising from multiple causes. We propose a model for multiple cause 
of death data grounded on an empirical approach that assigns weights 
to each cause on the death certificate. We describe how this model 
for multiple-cause mortality, which extends the usual competing 
risks model used to conceptualize single-cause mortality, can serve 
to study the burden and etiology of mortality related to each disease, 
particularly using Cox regression methodology. We discuss how the 
multiple-cause, single-cause, and “any-mention” approaches com-
pare in this regard. A simulation study and an application to a study 
of socioeconomic inequalities in mortality show the value of the 
proposed methods for exploiting this precious source of data to gain 
new insights, especially for certain diseases. See video abstract at,  
http://links.lww.com/EDE/B84.

(Epidemiology 2017;28: 12–19)

The importance of cause of death data for health research 
is reflected in longstanding international efforts to stan-

dardize death certificates and disease coding through the 
World Health Organization’s (WHO) International Classi-
fication of Diseases and Related Health Problems, now in 
its 10th Revision (ICD-10). The international form of the 
death certificate has two parts, as shown in the schematic 
figure provided in Volume 2 of the ICD-10 (page 24).1 In 
part I, the physician should describe the primary morbid 
process leading to death, with the immediate cause on the 
first line and the so-called underlying cause of death on the 
last line. In part II, any other diseases that contributed to 
the death are reported. Certificates are not always correctly 
filled, which is why there is a set of WHO rules to select the 
underlying cause.1,2

Statistics on mortality related to each disease, hence-
forth referred to as disease-related mortality, are primar-
ily based on the underlying cause of death. However, the 
assumption that all deaths are caused by only one disease 
is debatable, particularly with an aging population in an 
era where infectious diseases are replaced by chronic and 
degenerative diseases, several of which may be present at the 
moment of death.3 Thus, there has been an increased use of 
so-called multiple cause of death approaches, a term design-
ing any approach that examines other diseases reported on 
the death certificate.4 An example is the recalculation of 
mortality rates attributed to a disease by considering any 
mention of it on the certificate.5

Yet, there has not been a formal framework proposed for 
the statistical modeling of mortality that acknowledges that 
death may be caused by several disease processes acting con-
currently. We propose a model for multiple cause of death data 
by building on the weighting approaches described here and 
elsewhere.6 We discuss how this model can be used to study 
disease-related mortality and compare it with other approaches, 
using simulations and a study of socioeconomic inequalities for 
illustration.

MODELING FRAMEWORK

Goals for Disease-related Mortality Statistics
The following two goals are of high relevance for health 

research:
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Goal 1: To establish public health priorities, it is essential to 
quantify, in absolute terms, the burden of mortality attrib-
utable to each disease.

Goal 2: To understand the epidemiology of disease-related 
mortality, it is necessary to quantify the effect of certain 
factors (i.e., exposures, risk factors, etc.) on the force of 
mortality driven by each disease process, whether other 
separate disease processes are simultaneously present or 
not.

To address goals 1 and 2 using death certificate 
data, it has been emphasized that the method used should  
(1) acknowledge the multiple diseases that contributed to 
the death, as declared on the certificate; (2) count each death 
only once, regardless of how many diseases are reported on 
the certificate; and (3) reflect the relative importance of each 
disease in the occurrence of death compared with other con-
tributing causes.7,8 Next we discuss two common approaches 
to modeling these data and their limitations regarding these 
requirements.

Single-cause Model and Any-mention Approach
The single-cause model of mortality attributes each 

death entirely to one disease, taken to be the underlying cause 
of death from the WHO rules with death certificate data. This 
model thus violates requirements (1) and (3). The study of 
mortality related to a disease of interest is based here on the 
multistate model in Figure 1, which is the standard “compet-
ing risks” model from the survival analysis literature.9 All 
individuals begin at the “alive” state and, when they die, move 
on to exactly one of two absorbing states representing, respec-
tively, death with the disease of interest (state 1) or another 
disease (state 0) selected as underlying cause. The outcome 
for each individual is bivariate, consisting of the time-to-death 
T  and the binary state indicator. The goals above are usually 
addressed by modeling the so-called cause-specific hazards, 
denoted by �λk t( )  at time t > 0  for state k ∈{0,1}, which are 
the instantaneous rates of transitions into each of the states. 
Actually, the epidemiologic cause-specific mortality rate 
approximates the mean cause-specific hazard over the follow-
up period. The so-called cumulative incidence function is used 

for other purposes (see eAppendix, Section 1, http://links.
lww.com/EDE/B77).

The “any-mention” approach considers any mention of 
the disease of interest on a certificate as an event, and is currently 
used in the context of recalculating disease-related mortality 
rates. This approach violates requirements (2) and (3). Each 
deceased individual contributes to death counts for as many dis-
eases as appear on the certificate. Thus, the statistical units are 
items in death certificates instead of deaths, and this complicates 
the interpretation of estimates and gives the illusion of increased 
statistical power. Furthermore, all diseases mentioned on the 
certificate are assumed to have contributed equally to the death.

Multiple-cause Model
The proposed methodology is based on attributing a 

positive weight to each disease on the certificate such that the 
sum of the weights for all diseases mentioned is one. The aim 
of this procedure is to allow for all contributing diseases to 
be represented in the analysis (requirement (1)) but in such 
a way that each death has an equal influence in the analysis 
regardless of the number of diseases mentioned (requirement 
(2)). Ideally, the weight attributed to each disease should 
reflect the importance of its role in causing that death rela-
tive to other diseases (requirement (3)). The notion of a set of 
weights with these properties is a convenient way to address 
all these requirements and exploit all the information in death 
certificates, but it represents only an approximation to the 
actual causal process through which diseases act together to 
cause death (see “Discussion”). In particular, regarding the 
last property, the choice of the actual values given to these 
weights is subjective, just as is the choice of the underlying 
cause in the single-cause model. Hence, in the same way as 
the underlying cause is selected today using rules obtained by 
international consensus, in the future the choice of weights 
could be based on predetermined, possibly expert-based,9 con-
sensual strategies. For now, the weight-attribution issue needs 
to be addressed as a sensitivity analysis, as discussed next.

Weight-attribution Strategies
For a given death, let Π  denote the weight attributed 

to the disease of interest. To determine Π , a first strategy 
is to distribute equal weights to each disease on the certifi-
cate, so that Π = 1/ ( 1)k +  if the disease is mentioned on the 
certificate along with k ≥ 0  other diseases, and Π = 0  if it 
is not mentioned (the “equal weights” approach). However, 
this strategy does not address requirement (3). In particular, 
similar to the any-mention and single-cause approaches, it 
ignores some expert, individual-level information contained 
in the certificate that can be used to infer the importance of the 
disease of interest relative to others. Specifically, four pieces 
of information are available: whether the disease is mentioned, 
whether it was selected as the underlying cause, the number 
of other diseases mentioned, and the position of the disease on 
the certificate.

FIGURE 1.  Multistate model for studying mortality related to 
the disease of interest based on the single-cause approach.
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A strategy that uses all this information and addresses 
requirement (3) is to attribute, whenever other diseases are 
present, a larger weight ω  to the underlying cause, and dis-
tribute the rest of the weight equally among the other diseases 
mentioned. Conveniently, taking ω = 1  coincides with the 
single-cause model. A refined version of this strategy, which 
we adopt in our simulation study and illustrative example, 
excludes diseases that are complications or consequences of 
the underlying cause, theoretically indicated in part I of the 
certificate, before assigning the weights; thus these diseases 
are assigned a zero weight. The rationale for this choice is 
that, when considering that death may be caused by exposure 
to several diseases simultaneously, it is more meaningful from 
a causal perspective to examine separate disease processes 
(i.e., diseases on separate causal pathways). Indeed, those dis-
eases assigned a zero weight can be thought of as mediating 
factors on the path between the underlying cause and death.

Specifically, for a chosen ω , the strategy is as follows:

Rule 1: �Π = 1  if the disease is the underlying cause and no 
other diseases are mentioned in part II of the certificate.

Rule 2: �Π =ω  if the disease is the underlying cause and other 
diseases are mentioned in part II of the certificate.

Rule 3: �Π = (1 ) / ( 1)2− +ω k  if the disease is not the underly-
ing cause but is mentioned in part II of the certificate 
along with k2 0≥  other diseases (different from the 
underlying cause).

Rule 4: �Π = 0  if the disease is not mentioned anywhere on 
the certificate or is mentioned in part I but is not the 
underlying cause.

In rule 3, the condition in parentheses is added because 
the underlying cause (as determined by WHO rules) may have 
been mentioned in part II of the certificate but should not be 
considered a “secondary” cause.

The value of ω  being subjective, different values for 
ω  need to be assessed. We recommend assessing the follow-
ing four possibilities, or close variations of these: (1) ω = 1  
(“single-cause” approach), (2) ω = 0.75, (3) ω = 0.5, and  
(4) “equal weights” approach.

Multistate Model for Studying Disease-related  
Mortality

Once weights are attributed, the study of mortality 
related to a disease of interest can be based on the multistate 
model in Figure 2. All individuals begin at the “alive” state 
and, at death, move on to exactly one of several absorbing 
states, with state π  ( )0 1≤ ≤π  representing death for which 
a weight π  was attributed to the disease under consideration 
(i.e., Π = π). Although in theory the number of possible states 
(i.e., values of Π ) is infinite, in practice we will deal with 
only a finite number, possibly small depending on the weight-
attribution strategy.

This model extends the usual competing risks model 
(Figure  1) in that now there are competing endpoints 

corresponding to death from a combination of diseases 
(states with 0 < < 1π ). Nonetheless, the statistical struc-
ture is equivalent, with the outcome for each individual 
being bivariate, now consisting of ( , )T Π . Hence, for each  
π  ( 0 1≤ ≤π ), it would be possible to use the same meth-
ods to study the state-specific hazard λπ ( )t , which is the 
instantaneous rate of transition into state π . While this pos-
sibility of studying end-points representing disease mixtures 
has been suggested before,11,12 it has not found appeal as this 
will be relevant only in some specific cases (see “Discus-
sion”). Designing public health policies that target death 
from disease combinations in general would be impracti-
cal and often senseless as there may be very few deaths for 
each given combination. In epidemiologic research, it seems 
unappealing to study exposure effects on the risk of death 
from a combination of diseases, specifically when each of 
these is considered to drive separate processes, arising as the 
individual ages. Rather, interest lies in goals 1 and 2, which 
can be addressed in this new framework as detailed next.

Addressing Goal 1
The total burden of mortality attributed to the disease of 

interest can be quantified in absolute terms using the sum of 
fractions of deaths attributed to that disease:

	

π ππ
N

>∑ 0 ,
Totalperson-timeatrisk 	 (1)

where Nπ  is the number of deaths for which Π = π .  
In another paper6 we use (1) which is the maximum likeli-
hood estimator of 

π ππλ
>0∑  if all hazards λπ  are assumed 

constant,12 as a basis for estimating age- and sex-standardized 
disease-related mortality rates in France.

Addressing Goal 2
In Figure 2, the rates of transition into the “pure” states 

1  and 0 , λ1( )t  and λ0 ( )t , represent the forces of mortality 

FIGURE 2.  Multistate model for studying mortality related to 
the disease of interest based on the multiple-cause approach. 
The model has a potentially infinite number of absorbing 
states, one for each π  such that 0 1≤ ≤π . The infinity of 
states is represented schematically in gray.
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due solely to the disease of interest and other diseases, respec-
tively. We call these functionals the pure hazards. For goal 
2, it is necessary to identify a functional interpretable as the 
force of mortality driven by the disease process of interest, 
whether other separate disease processes are simultaneously 
present or not. We can endow λ1( )t  with this broader inter-
pretation by parameterizing the transition hazards in the mul-
tistate model in such a way that each state-specific hazard rate 
λπ ( )t  is completely determined by a combination of λ1( )t  and 
λ0 ( )t . Addressing goal 2 then amounts to regression analysis 
of λ1( )t .

Specifically, letting X  and Z  denote (possibly overlap-
ping) vectors of covariates (e.g., exposure status, gender, etc.) 
influencing λ1( )t  and λ0 ( )t , respectively, a possible assump-
tion is that for each π  (0 1)≤ ≤π :

	
λ πλ π λπ ( | , ) = ( | ) (1 ) ( | ).1 0t t tX Z X Z+ − 	 (A0)

Assumption (A0) has the interpretation that the force 
driving individuals into state π  results from a weighted sum 
of the forces of the two separate processes at play. Techni-
cally, fitting regression models for the pure hazards under 
(A0) ensures that all deaths partially attributed to the disease 
of interest ( )Π > 0  contribute information to the estimation 
of the effect parameters determining λ1( )t , and the informa-
tion contribution is (loosely speaking) proportional to the role 
the disease of interest played in those deaths. Other assump-
tions expressing λπ ( )t  in terms of λ1( )t  and λ0 ( )t  could be 
adopted if deemed suitable. Assumption (A0) has an intuitive 
interpretation, appeals to the additivity of rates, and results in 
a similar property for the cumulative incidence functions (see 
eAppendix, Section 1, http://links.lww.com/EDE/B77).

COX REGRESSION FOR THE PURE HAZARDS

Required Data
The required data for each individual i n= 1, ,…  are: 

the minimum of the time-to-death and a right-censoring time, 
�T T Ci i i= { , }min ; the censoring indicator, U C Ti i i= 1( )≤ ; if the 
individual is uncensored ( )Ui = 0 , the proportion Π i  of his 
death attributed to the disease of interest; and Xi  and Zi ,  
the covariates influencing the pure hazards of the disease of 
interest and other diseases, respectively (these could be time 
dependent, but we do not explicitly allow for this below). For 
identifiability it is necessary to observe some individuals in 
the pure states (i.e., with Π i = 1  or 0).

Model
We assume independent and identically distributed data 

and independent right-censoring given covariates, (A0) and 
that both pure hazards follow Cox models and are related, as 
follows:

	 λ λ1 10( | ) = ( ) ( ’ )t tX Xexp ρρ 	 (A1)

	 λ λ0 00( | ) = ( ) ( ’ )t tZ Zexp φφ 	 (A2)

	
λ λ ξ00 10( ) = ( ) { ( )}t t texp − 	 (A3)

The apostrophe denotes transposition. Under (A0)–
(A3), it follows that

λ λ π π ξπ ( | , ) = ( )[ { ’ } (1 ) { ( ) ’ }].10t t tX Z X Zexp expρρ φφ+ − − +

Generally the target parameter is ρρ, the effect of X  on 
the pure hazard of the disease of interest. Yet, unlike in the 
single-cause model, we need to posit a model for λ0 ( | )t iZ  as 
well, for example as in (A2), and we need to fit both models 
simultaneously to incorporate deaths going into the mixture 
states. This is the consequence of (A0), which involves both 
pure hazards for deaths with 0 < < 1Π i . As it stands, (A3) 
does not impose any restrictions. However, the specific esti-
mation theory used here requires a fully parametric model for 
the log ratio of the baseline pure hazards, ξ ( )t . In our exam-
ple, we parameterized this as a piecewise constant function. 
Such models provide much flexibility while keeping estimat-
ing procedures simpler.

We fitted this model using an estimating equation 
approach,14,15 inspired from the literature on missing and 
misclassified causes of death16–19 (details in eAppendix, Sec-
tion 2, http://links.lww.com/EDE/B77). We derived a quan-
tity reflecting the absolute burden on mortality of the disease 
of interest in the baseline population that can be estimated 
from the fitted model, and can be seen as a cumulative/time- 
dependent version of (1). We call it the disease-attributed 
cumulative baseline hazard (see eAppendix, Section 3, http://
links.lww.com/EDE/B77).

SIMULATION STUDY
We considered the simplified scenario where the dis-

ease of interest could be: not mentioned on the certificate, 
selected as underlying cause or mentioned in part II along 
with up to two diseases, and assumed weight-attribution 
strategy (2) ( )ω = 0.75 . This results in a multistate model 
with six absorbing states (see eAppendix, Section 4, http://
links.lww.com/EDE/B77), from which data can be gener-
ated by completely specifying all the transition hazards.20 We 
assumed (A0)–(A3) and that the log ratio of the pure base-
line hazards was constant (ξ ξ( ) =t ). Specifically, for each π , 
λ π ρ π ξ φπ ( | ) = 0.002 { ( ) (1 ) ( )}t X t X Xexp exp+ − − + , where 
X  was a binary exposure. We superimposed around 30% 

independent right censoring. Simulation R code is provided 
in the eAppendix (Section 7, http://links.lww.com/EDE/B77).

We compared various approaches to estimate the tar-
get parameter ρ : Cox regression for the pure hazards based 
on correct ( )ω = 0.75  and misspecified (ω = 0.5 , “equal 
weights”) weight-attribution strategies, and the single-cause 
(ω = 1 ) and any-mention approaches, both implemented 
using standard Cox regression considering, respectively, 
deaths with the disease as underlying cause and any mention 
of the disease (Π > 0 ) as events of interest.

http://links.lww.com/EDE/B77
http://links.lww.com/EDE/B77
http://links.lww.com/EDE/B77
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Figure 3 shows the distribution of the bias ρ̂ ρ−  across 
different scenarios (see eAppendix, Section 5, for other sce-
narios, http://links.lww.com/EDE/B77). The multiple-cause 
model with the correct weight-attribution strategy ( )ω = 0.75   
was unbiased, as expected, and only moderately biased with 
misspecified strategies (ω = 0.5  and “equal weights”). This 
approach was the least precise as the power here is driven 
by a reduced number of effective events, those considered 
“pure”, and it involves estimation of one more parameter (ξ ).  
Still, overall this approach provided a gain in terms of mean 
squared error in all scenarios considered, even under misspec-
ified weight-attribution strategies (see eAppendix, Section 5, 
http://links.lww.com/EDE/B77).

The single-cause and any-mention approaches yielded 
unbiased results when ρ φ= , but bias arose as these effects 
diverged. The bias in these two approaches is due to the 
effects on each of the pure hazards counterbalancing due 
to the consideration of deaths with Π = 0.75 and 0 < < 1Π ,  
respectively, as entirely due to the disease of interest, 
highlighting the importance of requirement (3). The any- 
mention approach resulted as foreshadowed in highly precise 
estimates.

EXAMPLE: EDUCATIONAL INEQUALITIES IN 
MORTALITY

The goal was to quantify relative educational inequali-
ties in disease-related mortality based on the cohort of men 
alive and ages ≥30 years on 01 January 2000 (n = 148,384) 
in a cross-sectionally representative 1% sample of the French 
population, which was linked with the French National Cause-
of-Death Register.20,21 After an 8-year follow-up, at the admin-
istrative censoring date (December 31, 2007), 11.8% had died 
(n = 17,512). This study was approved by the French data 
protection committee and institutional ethical review board 

(Commission Nationale de l’Informatique et des Libertés, 
authorisation No. 902368v2).

For each disease group separately, we fitted Cox models 
for mortality due to the disease group of interest and other 
diseases considering the four recommended weight-attribu-
tion strategies and the any-mention approach. The parameter 
of interest was the relative index of inequality, which is the 
exponentiated regression coefficient of the socioeconomic 
rank, a variable ranging from 0 = most educated to 1 = least 
educated.22 Age was the time scale in all approaches, and for 
strategies (2)–(4), ξ( )t  was modeled as piecewise constant, 
with pieces corresponding to 10-year age-groups.

Table 1 shows the distribution of event types. The ratio 
AM/UC (=deaths with disease mentioned on certificate/deaths 
with disease selected as underlying cause) is used in the litera-
ture to identify diseases for which multiple-cause approaches 
are more relevant.23 Table 2 shows estimates of the inequality 
index associated with the pure hazard of the disease group of 
interest (RII1). Estimates obtained for the other pure hazard 
were similar across all disease groups and approaches, with 
RII 0
� ≈ 2, and ξ( )t  was generally negative across the age scale 
(see eAppendix, Section 6, http://links.lww.com/EDE/B77).

More sensitivity to the method of estimation was 
observed for diseases with higher AM/UC ratio and an effect 
ρ = ( )1log RII  more discrepant from φ = ( ) (2)0log RII log≈ ,  
as in the simulations. For diseases with ρ φ≈  (endocrine and 
nutritional, musculoskeletal, cardiovascular, neoplasms, and 
other diseases) all approaches yielded similar estimates of 
RII1. For diseases of the nervous system and the sense organs, 
for which ρ φ< , the any-mention approach yielded a slightly 
higher estimate. For all other diseases ρ φ> , and the single-
cause and any-mention approaches yielded lower estimates. 
The multiple-cause model generally yielded similar results 
across the three remaining weight-attribution strategies, 
and for some disease-groups revealed larger socioeconomic 
inequalities, a result that may be of public heath relevance. 
As expected, these approaches yielded wider confidence inter-
vals, particularly for diseases with a small number of events 
(blood and skin) for which results were more unstable across 
approaches.

The ranking of disease groups by their burden on mor-
tality as determined by disease-attributed and cause-specific 
cumulative baseline hazard curves derived from these models 
was found to be sensitive to the approach used in some age-
groups (see eAppendix, Section 6, http://links.lww.com/EDE/
B77). Different approaches may thus lead to establishing dif-
ferent public health priorities.

DISCUSSION
Our proposal enables the use of multiple cause of death 

data to better understand the etiology and burden of disease-
related mortality. This valuable source of data coupled with 
the proposed methods could provide new insights, especially 
for diseases with high AM/UC ratios.

FIGURE 3.  Simulation study results: box plots of the bias  
distribution for five approaches across 1,000 datasets of 
n = 4,000  individuals, generated assuming ξ = 1− , φ = 0  
and varying values of ρ.
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As mentioned, the notion of a set of weights with the 
described properties is only an approximation of the way 
diseases cause mortality. The problem of weight attribution 
can be paralleled to the classic epidemiologic problem of 
attributing causal responsibility to exposures when consid-
ering multiple exposures that may interact in the “sufficient 
cause” sense.24 For example, in the extreme scenario, where 
two diseases can cause death only when present together 
but not on their own, death can be considered to be 100% 

attributable to each of these in that the death would be pre-
vented by removing any of the two diseases.25,26 If there is 
such a strong interaction between two or more diseases, 
then it seems reasonable to define this configuration of con-
ditions as a “disease” on its own, and actually the ICD is 
moving toward having specific “combination” codes for such 
cases.27 Also, arguably the study of disease-related mortality 
is restricted to “diseases” than can actually cause death, and 
accordingly the proposed approach requires that the disease 

TABLE 1.  Number of Deaths for Each Event Type by Disease Group Among the Deceased Individuals ( n = 17,512 )

Disease Groupa

ICD-10 
Codes UC AM AM/UC

Detailed Event Types

Ev1 Ev2 Ev3 Ev4 Ev5 Ev6

Neoplasms C00-D48 6,227 6,911 1.1 4,931 1,296 269 139 123 10,754

Cardiovascular I00-I99 4,671 8,120 1.7 3,165 1,506 591 433 310 11,507

Digestive K00-K93 840 1,930 2.3 532 308 89 61 68 16,454

Nervous/sense G00-H95 650 1,519 2.3 463 187 174 128 130 16,430

Musculoskeletal M00-M99 78 234 3.0 49 29 25 33 35 17,341

Respiratory J00-J99 1,118 3,826 3.4 650 468 200 186 199 15,809

Endocrine/nutritional E00-E90 531 1,884 3.5 343 188 233 291 329 16,128

Mental F00-F99 484 1,847 3.8 328 156 403 231 201 16,193

Infectious A00-B99 307 1,330 4.3 160 147 33 43 40 17,089

Genitourinary N00-N99 254 1,297 5.1 148 106 94 147 159 16,858

Skin L00-L99 38 265 7.0 22 16 15 31 41 17,387

Blood D50-D89 57 433 7.6 33 24 32 33 35 17,355

Other Other 2,257 10,314 4.6 1,943 314 492 395 393 13,975

aDisease groups sorted by increasing AM/UC ratio, except for group “other.”
AM, any mention of the disease on the certificate; Ev1, disease is underlying cause and no other diseases mentioned in part II; Ev2, disease is underlying cause and other diseases 

mentioned in part II; Ev3, disease is not underlying cause but is mentioned in part II by itself; Ev4, disease is not underlying cause but is mentioned in part II with one other disease; 
Ev5, disease is not underlying cause but is mentioned in part II with two or more diseases; Ev6, disease is not mentioned or is mentioned in part I but is not the underlying cause;  
ICD-10, International Classification of Diseases and Related Health Problems, 10th revision; UC, Disease selected as underlying cause.

TABLE 2.  For Each Disease Group, Estimates (and 95% Confidence Intervals) of the Relative Index of Inequality in Disease-
related Mortality (RÎI1) Obtained Using Various Approaches

Disease Groupa Any Mention

Single Cause Multiple Cause

ω = 1 ω = 0.75 ω = 0.5 Equal Weights

Neoplasms 1.8 (1.6, 1.9) 1.8 (1.6, 2.0) 1.7 (1.6, 1.9) 1.7 (1.6, 1.9) 1.7 (1.5, 1.9)

Cardiovascular 2.0 (1.9, 2.2) 2.1 (1.9, 2.3) 2.0 (1.8, 2.3) 2.0 (1.8, 2.3) 2.0 (1.8, 2.3)

Digestive 2.7 (2.2, 3.2) 3.3 (2.5, 4.4) 4.7 (3.3, 6.7) 4.9 (3.4, 7.0) 4.9 (3.4, 7.0)

Nervous/sense 1.3 (1.1, 1.6) 1.0 (0.7, 1.3) 1.0 (0.7, 1.4) 1.0 (0.7, 1.4) 1.0 (0.7, 1.5)

Musculoskeletal 2.1 (1.3, 3.6) 2.0 (0.8, 4.9) 2.0 (0.6, 6.2) 2.1 (0.7, 6.5) 1.8 (0.6, 5.7)

Respiratory 2.4 (2.1, 2.7) 3.1 (2.4, 4.0) 3.5 (2.5, 4.8) 3.6 (2.6, 5.0) 3.5 (2.5, 5.0)

Endocrine/nutritional 2.2 (1.8, 2.6) 2.4 (1.7, 3.4) 2.3 (1.5, 3.5) 2.2 (1.5, 3.4) 2.2 (1.5, 3.5)

Mental 3.5 (2.9, 4.2) 2.9 (2.0, 4.3) 3.5 (2.2, 5.4) 3.9 (2.5, 6.0) 3.9 (2.5, 6.1)

Infectious 2.0 (1.6, 2.5) 1.9 (1.2, 3.0) 2.6 (1.4, 5.0) 2.7 (1.4, 5.0) 2.7 (1.4, 5.0)

Genitourinary 1.9 (1.5, 2.4) 2.5 (1.5, 4.2) 2.8 (1.4, 5.7) 2.8 (1.4, 5.7) 2.8 (1.4, 5.7)

Skin 2.8 (1.7, 4.7) 5.8 (1.2, 27.4) 5.8 (0.7, 44.9) 3.5 (0.5, 23.9) 4.4 (0.6, 31.9)

Blood 2.1 (1.4, 3.1) 3.8 (1.2, 12.1) 8.9 (1.6, 48.5) 8.9 (1.6, 48.3) 9.0 (1.7, 48.9)

Other 2.0 (1.9, 2.2) 1.9 (1.6, 2.2) 1.9 (1.6, 2.2) 1.9 (1.6, 2.2) 1.8 (1.6, 2.2)

aDisease groups sorted as in Table 1.
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of interest is sufficient in some cases to cause death through 
the requirement of “pure events.”

Outside this setting of strong interactions, when consid-
ering diseases that are sometimes, but not always, sufficient 
to cause death, interest will generally be on studying each 
disease separately as discussed previously. This requires the 
distribution of causal responsibility among the diseases on 
the certificate, and the three approaches compared here suf-
fer from the subjectivity associated with this enterprise. The 
any-mention approach attributes a weight of 100% to each 
of these, which does not make sense from an epidemiologic 
point of view in this scenario, when considering that some 
diseases on the certificate may have been sufficient but were 
maybe not necessary to cause death. That is, the death may or 
may not be prevented (or delayed) by removing the disease. 
The single-cause approach attributes 100% to the underlying 
cause and 0% to all other diseases, ignoring them. The method 
proposed here is based on a set of weights adding up to one, 
which is also subjective, but performing a sensitivity analysis 
as described provides a structured way to approach this sub-
jectivity. Importantly, the proposed methods can be used even 
if weights adding up to more than one are attributed, although 
allowing for this possibility further complicates the weight-
attribution issue. Also, the sum of the disease-attributed 
cumulative hazards will then add up to more than the total 
cumulative hazard of mortality, which complicates interpre-
tation but this could be considered a natural requirement of 
“shared causal responsibility”.25

In the future, the choice of weights may be the object of 
an international consensus as is the choice of the underlying 
cause today. One could also consider estimating these weights 
as population attributable fractions28 or related quantities,29 
but these also suffer from subjectivity in the way causal 
responsibility is distributed among the different diseases.30 
Furthermore, this would require data from a large longitudinal 
cohort, recording the incidence of all diseases and mortality 
over time, which is generally unavailable. Another unappeal-
ing aspect of replacing the weights by population estimates 
is the loss of the individual-level death certificate informa-
tion, particularly given the arguably strong causal nature of 
diseases mentioned at the moment of death.

The acknowledgment of multiple-cause mortality does 
not solve the “competing risks” problem in the causal sense. 
For each individual, we still observe only the time-to-death 
from one combination of diseases, and their potential time-
to-death from another combination is not observable. Thus, 
the independence between these potential times-to-death 
remains unidentifiable, and so does the actual target quantity 
for goal 2: the causal “marginal” hazard (i.e., the hazard of 
deaths caused by the disease of interest in a counterfactual 
world without other diseases).30 As noted by Prentice and col-
leagues,9 what multiple cause data enable is the identifiability 
of interrelations between diseases in causing death because 
we observe individuals dying from combinations of these. 

Importantly, neither the approaches proposed here nor those 
described for the single-cause model, make any assumptions 
regarding the (in)dependence between the potential times-
to-death. Arguably, the pure hazard, being the rate of deaths 
caused exclusively by the disease of interest, is a quantity that 
is conceptually closer to the marginal hazard than the cause-
specific hazard. Still, whether the pure and marginal hazards 
coincide continues to depend on this unidentifiable indepen-
dence assumption.

We mentioned that it is more meaningful from a causal 
perspective to consider diseases on separate causal pathways. The 
current death certificate allows us to identify these only to a lim-
ited extent due to its design. In addition, the well-known issues 
of quality and comparability of death certificate data across 
countries and over time become even more important when one 
starts to consider all the diseases and their position.4,5 One step 
to improve the accuracy of these data would be to devise a set of 
international rules, in the spirit of those for selecting the underly-
ing cause, with the aim of identifying separate morbid processes 
in the death certificate and selecting their initiating causes.

The findings in the example rely on assumptions (A0)–
(A3) holding, which points to the need for methods to assess 
the fit of this model to the data, as well as models that consider 
other such assumptions. Overall, further research into the sta-
tistical modeling of multiple cause of death data is warranted; 
despite their many drawbacks, mortality databases remain a 
reference for public health monitoring and life-course epide-
miology as they currently represent the only data that is sys-
tematically collected for every individual in most countries by 
an expert and in a standardized way.
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